CHARACTERISTICS OF TURBULENT-EXCHANGE
COEFFICIENTS IN A VISCOUS UNDERLAYER

P. I. Geshev UDC 532.517.4 +532.72

The transient equations for longitudinal (along the flow) velocity pulsations and pulsations of
concentration in the region of a viscous underlayer are considered. Estimates based on ex-
perimental data enable the contributions arising from certain terms of these equations fo be
neglected in turbulent transfer. Subject to this approximation, expressions are obtained for
the turbulent viscosity and diffusion coefficients. These coefficients behave differently in the
case of large Schmidt (Prandtl) numbers. The behavior of the turbulent Schmidt number in
the region of the viscous underlayer is analyzed.

1. It follows from earlier experiments [1, 2] that the longitudinal component of pulsational velocity u
in a viscous underlayer varies linearly with distance from the wall (u ~y). This relationship is also valid
for the tangential velocity pulsations (w~y). For the component perpendicular to the wall we obtain the
following expression from the continuity equation:

v=—§(%+%)dy~y2 (1.1)

1]

for the turbulent Reynolds stresses we have (uv) ~y® and for the turbulent viscosity

vy = — (uv) (dU [dy) ™ ~¢® (1.2)
where U (y) is the mean flow velocity. Here and subsequently the angular brackets signify time-averaging
(or averaging over a statistical assembly).

From qualitative considerations, Landau and Levich proposed the following equation for turbulent
viscosity in the region of a viscous underlayer
vp = V) T~y (1.3)

where T is the average period of the velocity pulsations, a quantity which is independent of y by virtue of
the linearity of the equations of motion in the viscous underlayer [3]. Sometimes it has been pointed out

that Eq. (1.2) does not allow for the possibility of a change in the correlation coefficient with distance from
the wall, i.e., it is assumed that

K= uvd [V <u%y v% ~y

We note that, for the case of two-dimensional turbulence, depending solely on x and y, if we assume
that the system is homogeneous with respect to x there is an exact proof of the fact that Ky =0 for y =0.

From the continuity equations (1.1), confining attention to the first nonvanishing terms, we have
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Tn view of the statistical homogeneity with respect to x, the quantity (u'2> is independent of x, so that
the coefficient of the third power in the expansion of the Reynolds stresses in powers of y is equal to zero,
and the expansion starts with the term in y*.

Experiments [4] show, however, that turbulence in the viscous underlayer had a considerable three-
dimensional component, so that the proof based on the two-dimensional assumption fails, and the question
as to the validity of Eqs. (1.2) and (1.3) remains open. We tried to establish the turbulent-exchange attenu-
ation power index by making use of existing data relating to mass transfer at high Schmidt numbers (S=
y/D > 1 where v is the viscosity and D the diffusion coefficient), for which the diffusion layer is completely
msubmerged” in the viscous underlayer and turbulent pulsations play a decisive role in mass transfer.
However, the accuracy of these experiments is insufficient, since they admit interpretations in favor of
both third [5-7] and fourth [8-10] power laws for the attentuation.

It was assumed in the papers cited [3, 5-10] that the behavior of the turbulent viscosity and diffusion
coefficients was identical. This is equivalent to the assertion that the turbulent Schmidt number is constant
over the thickness of the viscous underlayer (St =vy/ Dy =const). However, for §>1 this assumption is not
satisfied. This was pointed out in [11], and a scheme was proposed according to which v ~ v, Dp~ vt in
the viscous underlayer, and hence the turbulent Schmidt number

Sy ~y?t (1.4)
In this paper the equation in question is obtained for the limiting case as § — .

2. Let us consider the turbulent flow of an incompressible liquid flowing in the direction of the x axis
over a plane surface (y=0). U (y) is the average flow velocity, u, v, w are the pulsational velocity compo-
nents in the directions x, y, z, and p are the pressure pulsations. All the variables (dependent and indepen-
dent) are made dimensionless by means of the viscosity v and the dynamic velocity v, = v 7y/p , where 7,
is the friction at the wall,p is the density of the liquid. The turbulence is assumed homogeneous in the x
and z directions and steady in time.

In dimensionless form the equation for u appears thus
——Au=—v ig —Q

Q= U5+ T+ o v — wnd) + F- + 3£ @1

where A is the Laplace operator.

Considering the right-hand side in Eq. (2.1) as an inhomogeneity, we may rewrite it in integral form,
allowing for the *adhesion™ boundary condition (u) v =0 =0

u(x, )= — SSde' < dt’ [ (’t’)dU(y +Q (¥, t)]G(x Xt — 1Y) (2.2)

Y >0 —co

where G (x, x'; t—t") is the Green's function of the heat-conduction equation

G(x,x';t —1t')= exp (— -——————-—-(m_?:t_F & ) [4m (t—1t')]~= [exp (—— —H;_{);) — exp <— ;y(tq—_yt?‘)’ )] (2.3)

In Eq. (2.2) we replace the integration variable t*=t— 7 after which we multiply (2.2) by v (x, t) and
average. We obtain the Reynolds stresses

oy = — {{f o { ae (covr> S+ Q") € (x, x5 ) 24)
0

>0
where the prime on the functions in the brackets means that these depend on the integration variables x'
and 7.

We may neglect the term (vQ') in the integrand by comparison with the first term in round brackets.
The following grounds exist for this:

1) The nonlinear terms in Q are small in the region of the viscous underlayer, and in the Reynolds
stresses (2.4) they give triple correlation functions of the velocity pulsations, which are much smaller than
the second correlation (vv').
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2) Experiments {4] aimed at visualizing the flow in the vis-

57 /———_—————‘-‘ cous underlayer showed that the wall eddies were greatly ex-
/ tended along the flow; this may be explained by the action of the

7
_/ mean velocity gradient dU/dy. The mean extent of the eddies in

2 the z direction is A z ~ 10%, the extent along the x axis is, on aver-
0.5

7 : age, an order of magnitude greater (Ax ~ 109) [12, 13, 4], so that
7

the three terms in Q containing derivatives with respect to x may

7/ be neglected, since the amplitudes of the velocity pulsations are _

.VJ of the order of unity over the whole turbulent region, and in the
b7/

region of the underlayer diminish as the corresponding powers
of y.

)
S

20
Fig. 1
3) As y —0 all the terms on the right-hand side of Eq.
(2.1) tend to zero except 9p/9x ; the amplitude of the pressure
pulsations is small (f(p—zs ~1) [14] while the scale of the eddies along x is great (Ax ~ 10%. Hence the
layer in which | 8p/8x| >|v|dU/dy is thin and makes a negligibly small contribution to the Reynolds
stresses.

Thus the term proportional to the mean velocity gradient makes the chief contribution to the Reynolds
stresses.

By virtue of its homogeneity and steady-state nature, the correlation (vv'y depends solely on y, y°,
x—x', z—z', and 7 =t—t'. The mean period of the pulsations of the viscous underlayer was determined ex-
perimentally in [13] (T ~20). If the function (vv') falls rapidly for 7 =t—T*'> 20, then analysis of Eqs.
(2.3) and (2.4) shows that the dependence on the slowly-changing arguments x — x' and z — z' in the function
may be neglected (remembering that Ax ~ 103, Az ~ 10%. This corresponds to neglecting the second
derivatives with respect to x and z in the Laplacian of Eq. (2.1) (boundary-layer approximation). After
integrating with respect to x' and z' in (2.4) we obtain

o

upy = — S dy’S dv oy, o, t — )Gy, ¥ 7) dgy(,y" = — %U_ (2.5)
0 [

where the mean velocity gradient is taken outside the integration sign, being a function which varies only
slowly in the viscous underlayer. For the turbulent viscosity we obtain from (2.5)

vr) = ay (aR@w vi 96w viv), Ru.VivO= @ Hv @, t—1> (2.6)

where G (y, y'; 7) is the Green's function of the heat-conduction equation on a semiinfinite straight line

Gy, y's v) = (4nr)~” [exp (— Ly—;;ir)i) — exp (— —(y—i;_—yﬁz—)] (2.7)

Since G ~y and R~y? as y —0, Eq. (2.6) leads to a third-power attenuation law: vy ~ y°.

3. In dimensionless form the equation for the pulsations of concentration ¢ appears thus
de 1 dac dc due [/}

— e 3.1)
M U — gy e — ) —

where C (y) is the mean concentration.

The boundary condition for Eq. (3.1) is the same as in the previous case [(c) y=0=0]. The problem is
entirely analogous to the case set out in section 2. The approximation used there is valid here also; in fact
in the present case it has better grounds since no pressure gradient appears in (3.1). When the Schmidt
number S >1 it may be shown (using perturbation theory) that the rejected last four terms in (3.1) make a
contribution to the turbulent mass flow (ve) proportional to higher powers of y than the retained term
vdC /dy.

Omitting the calculations, let us simply give the final expression for the turbulent diffusion coeffi-
cient
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Dr(y) =S ay' § arR, v G v5v/9) (3.2)
0 0

which conicides with Eq. (2.6) except for the time argument in the Green's function (2.7), which in the pre-
present case is divided by S.

Analysis of Eq. (3.2) shows that for large but finite S there is a narrow region y < $'/2 in which D
Dt ~y. If we let S tend to infinity and use the Green's function property

EH;G(!/, ¥y, @) =3y —y)

where 6§ (y—y") is the Dirac delta function, we obtain the Landau—Levich equation (1.3), which is only valid
for turbulent diffusion when S > 1, but not for turbulent viscosity

o

Dr ()= @ vt — v dv= DT~y
0
where the mean period of the pulsations T is the Lagrange time scale

-3

T=\ Ry, y;vdr /R, y; 0)

0

4. For the correlation function R in the viscous underlayer we may propose the following approxima-
tion:
Ry, y's 1) = Ayye=/T

where A and T are constants. Then the integrals in Eqs. (2.6) and (3.2) may be expressed in elementary
functions; after dividing (2.6) by (3.2) we obtain the turbulent Schmidt number

_ g A—exp(—y/ V) tp/2r 4.1)
Sp =8 r =)
1 —exp(—y VS/T) 4425 /2T

We see from (4.1) that St = 1 for S=1. This may also be concluded from Egs. (2.6) and (3.2). For
S>1 there are three regions of differing St behavior: y < vT/8 ST ~v§ in the region VT > y>VT/S
ST ~ y~!; for y > VT the turbulent Schmidt number is close to unity, and in the limit (y —<) we have St=1.
Figure 1 shows the behavior of the turbulent Schmidt number (ST'i) for T=20 and S=2, 5, 10, 20, 80, »
(curves 1, 2, 3, 4, 5, 6 respectively).

Data regarding the turbulent Schmidt number are extremely contradictory, but there is not doubt as
to the fact that on moving away from the wall it ceases to depend on molecular effects (on S) and becomes
constant. In this case St -1 as y—<~. This is a consequence of the approximation taken (the convective
terms and 8p/9x are rejected), which is invalid outside the viscous underlayer.

5. If motion of the liquid takes place close to the wall with a characteristic time T, the dimensions
of the regions in which the influence of viscosity and diffusion is felt (from dimensional considerations)
amount to

y1~l/ﬁ, yz~VT)T 5.1)
where all the quantities are dimensional.

For v > D there is a region y, > y >y, in which we may neglect the action of molecular diffusion on
turbulent (molar) mass transfer, but we must still not neglect the action of viscosity on the velocity pulsa~
tions, and hence on the turbulent transfer of momentum. Neglect of molecular effects leads to Eq. (1.3).
Equation (5.1) in dimensionless form gives those values of the coordinate y for which the behavior of ST
changes in Eq. (4.1).

If heat is regarded as a passive impurity, all the results are also valid for heat-transfer processes;
it is only necessary to replace the concentration by temperature and the Schmidt number by the Prandtl
number Pr.

We may therefore reasonably assume that the law of turbulent friction (1.2) holds in the viscous under-
layer, and the limiting value of the turbulent Schmidt (Prandtl) number is given by the equation
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. ~ 1yl
S'1114‘1100 (St, Prp)~y (L4 *

Thus in experiments on mass transfer with large Schmidt numbers only the behavior of Dy (y) may

be determined; this relationship should approach the fourth-power law of attenuation move closely, the
greater the value of S. The behavior of v (y) cannot be determined from these experiments.

The author is grateful to S. S. Kutateladze, V. E. Nakoryakov, M. A. Gol'dshtik, and V. N. Shtern for

discussing the results of this investigation.
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