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The t r ans ien t  equations for  longitudinal (along the flow) veloci ty  pulsat ions  and pulsat ions  of 
concentra t ion  in the region of a v i scous  under layer  a re  considered.  E s t i m a t e s  based  on ex-  
pe r imenta l  data enable the contr ibut ions a r i s ing  f rom ce r t a in  t e r m s  of these  equations to be 
neglected in turbulent  t r ans fe r .  Subject to this  approximat ion,  expres s ions  a r e  obtained for 
the turbulent  v i scos i ty  and diffusion coeff ic ients .  These coeff ic ients  behave di f ferent ly  in the 
case  of l a rge  Schmidt (Prandtl) numbers .  The behavior  of the turbulent  Schmidt number  in 
the region of the v iscous  under layer  is analyzed. 

1. It follows f r o m  e a r l i e r  exper imen t s  [1, 2] that the longitudinal component  of pulsat ional  ve loc i ty  u 
in a v iscous  under layer  v a r i e s  l inear ly  with dis tance f rom the wall (u ~ y). This  re la t ionship  is a l so  val id  
for  the tangential  ve loc i ty  pulsat ions (w ~ y). Fo r  the component  perpendicu la r  to the wall we obtain the 
following express ion  f rom the continuity equation: 

y !l v = - -  - ~ q - ' ~ -  dY'~ 'Y ~ (1.1) 

for  the turbulent  Reynolds s t r e s s e s  we have (uv} ~ y3 and for  the turbulent  v i scos i ty  

a,~ = - -  (uv )  (dU / dy) -1 ~ y 3  (1.2) 

where  U (y) is the mean flow velocity.  Here  and subsequently the angular  b r acke t s  signify t i m e - a v e r a g i n g  
(or averag ing  over  a s ta t i s t ica l  assembly) .  

F r o m  quali tat ive cons idera t ions ,  Landau and Levich proposed  the following equation for  turbulent  
v i scos i ty  in the region of a v i scous  under layer  

vr == (v 2) T ~- ya (1.3) 

where T is the ave rage  per iod of the veloci ty  pulsat ions,  a quanti ty which is independent of y by v i r tue  of 
the l inear i ty  of the equations of motion in the v iscous  under layer  [3]. Somet imes  it has been pointed out 
that  Eq. (1.2) does not al low for  the poss ibi l i ty  of a change in the co r r e l a t i on  coeff icient  with dis tance f rom 
the wall, i .e.,  it is a s s um ed  that 

We note that, for  the case  of two-dimens ional  turbulence,  depending sole ly  on x and y, if we a s s u m e  
that the sys t em is homogeneous with r e s pec t  to x the re  is an exact  p roof  of  the fact  that  Kuv =0 fo r  y =0. 

F r o m  the continuity equations (1.1), confining attention to the f i r s t  nonvanishing t e r m s ,  we have 

, ,  
U ~ Ox 2 ~ y~O 

/\Ou' yS..~_ 0 

Novosiblrsk.  T rans l a t ed  f rom Zhurnal  Pr ik ladnoi  Mekhaniki i Tekhnieheskoi  Fiziki ,  No. 2, pp. 61-66, 
March-Apr i l ,  1974. Original  a r t i c l e  submit ted  October  12, 1973. 

�9 19 75 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

196 



In view of the s tat is t ical  homogeneity with respect  to x, the quantity (u '2} is independent of x, so that 
the coefficient of the third power in the expansion of the Reynolds s t r e s s e s  in powers of y is equal to zero,  
and the expansion s ta r t s  with the t e r m  in y4. 

Exper iments  [4] show, however,  that turbulence in the viscous under layer  had a considerable  t h r ee -  
dimensional component,  so that the proof based on the two-dimensional  assumption fails, and the question 
as to the validity of Eqs. (1.2) and (1.3) remains  open. We t r ied  to establish the turbulent-exchange attenu- 
ation power index by making use of existing data relat ing to mass  t r ans fe r  at high Schmidt numbers  (S = 
v / D  >> 1 where v is the v iscos i ty  and D the diffusion coefficient), for which the diffusion layer  is completely  
"submerged"  in the v iscous  under layer  and turbulent pulsations play a decisive role in mass  t ransfer .  
However,  the accuracy  of these experiments  is insufficient, since they admit interpretat ions in favor of 
both third [5-7] and fourth [8-10] power laws for  the attentuation. 

It was assumed in the papers  ci ted [3, 5-10] that the behavior of the turbulent v i scos i ty  and diffusion 
coefficients was identical. This is equivalent to the a s se r t ion  that the turbulent Schmidt number is constant 
over  the thickness of the v iscous  under layer  (S T = V T / D T  =const).  However, for  S >>1 this assumption is not 
satisfied. This was pointed out in [11], and a scheme was proposed according to which v T ~ y3, DT ~ y4 in 
the v iscous  underlayer ,  and hence the turbulent Sehmidt number 

ST ~ y-1 (1.4) 

In this paper  the equation in question is obtained for the limiting case  as  S --* oo. 

2. Let us consider  the turbulent flow of an incompress ib le  liquid flowing in the direct ion of the x axis 
over a plane surface (y =0). U (y) is the average flow velocity,  u, v, w are  the pulsational veloci ty  compo-  
nents in the direct ions  x, y, z, and p are  the p re s su re  pulsations. All the var iables  (dependent and indepen- 
dent) are  made dimensionless  by means of the v i scos i ty  v and the dynamic veloci ty v .  = ~ w / P ,  where T w 
is the fr ict ion at the wall ,0 is the density of the liquid. The turbulence is assumed homogeneous in the x 
and z direct ions and steady in t ime. 

In dimensionless  form the equation for u appears  thus 
dg 

O~ Au = - -  v - -  Q 
ot 

Q =  U ou ou~ , ~ Ouw Op (2.1) 
Ox + ~ + - ~  (uv -- <uv>) + - 7  + -g~ 

where A is the Laplace operator .  

Considering the r ight-hand side in Eq. (2.1) as an inhomogeneity, we may rewri te  it in integral form, 
allowing for the "adhesion" boundary condition (U)y =0 =0 

t 

t ) ~ ~- Q (x', x'; t') (2.2) 
y ' ~ 0  - -c r  

where G (x, x ' ;  t - t ' )  is the Green ' s  function of the heat-conduction equation 

In Eq~ (2.2) we replace the integration var iable  t '  = t -  T after  which we multiply (2.2) by v (x, t) and 
average.  We obtain the Reynolds s t r e s se s  

co 

+ <vQ'> 1 G (x, x'; ~) (2.4) 
y ' ~ 0  0 

/ 

where the pr ime on the functions in the brackets  means that these depend on the integration var iables  x' 
and T. 

We may neglect the term (vQ'} in the integrand by comparison with the first term in round brackets. 

The following grounds exist for  this: 

1) The nonlinear t e r m s  in Q are small  in the region of the viscous underlayer ,  and in the Reynolds 
s t r e s ses  (2.4) they give triple cor re la t ion  functions of the veloci ty pulsations, which are  much smal le r  than 
the second cor re la t ion  ( w ' }  . 
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Fig. 1 

2) Experiments  [4] aimed at visualizing the flow in the v i s -  
cous underlayer  showed that the wall eddies were great ly  ex-  
tended along the flow; this may be explained by the action of the 
mean velocity gradient dU/dy. The mean extent of the eddies in 
the z direction is A z ~ 102, the extent along the x axis is, on a v e r -  
age, an order  of magnitude g rea te r  (Ax ~ 103) [12, 13, 4], so that 
the three t e r m s  in Q containing derivat ives  with respec t  to x may 
be neglected, since the amplitudes of the velocity pulsations are  
of the order  of unity over  the whole turbulent region, and in the 
region of the underlayer  diminish as  the corresponding powers 
of y. 

3) As y - -  0 all the t e r m s  on the r ight-hand side of Eq. 
(2.1) tend to zero  except 3p/0x  ; the amplitude of the p re s su re  

pulsations is small  (~/(p2) ~ 1) [14] while the scale of the eddies along x is great  (Ax ~ 103). Hence the 
layer  in which ] 0p/ax I > Iv ] dU/dy is thin and makes a negligibly small  contribution to the Reynolds 
s t resses .  

Thus the t e r m  proport ional  to the mean veloci ty gradient makes the chief contribution to the Reynolds 
s t resses .  

By vir tue of its homogeneity and s teady-s ta te  nature, the cor re la t ion  ( w  v) depends solely on y, y~, 
x - x  t, z - z ' ,  and r = t - t L  The mean period of the pulsations of the v iscous  under layer  was determined ex-  
perimental ly  in [13] (T~20) .  If the function ( w ' )  falls rapidly for  r = t - T  t > 20, then analysis  of Eqs. 
(2.3) and (2.4) shows that the dependence on the slowly-changing arguments  x - x '  and z - z w in the function 
may be neglected ( remember ing  that Ax ~ 103, AZ ~ 1 0 2 ) .  This cor responds  to neglecting the second 
derivatives with respec t  to x and z in the Laplacian of Eq. (2.1) (boundary-layer  approximation). After  
integrating with respect  to x I and z ~ in (2.4) we obtain 

<uv> = - -  dy '  dz  <v (y, t) v (y', t - -  z)) G (y, y'; ~) dU (y') dU (2.5) 
~ -  - -  " ~ T  d y  ..... 

0 0 

where the mean veloci ty gradient is taken outside the integration sign, being a function which var ies  only 
slowly in the viscous underlayer .  For  the turbulent v iscos i ty  we obtain f rom (2.5) 

vr  (y) = I dy' I d'~R (y, y'; ~) G (y, y'; T), R (y, y'; ~):= (v  (y, t) v (y', t - -  z ) )  (2.6) 
r 0 

where G (y, y ' ;  T) is the Green 's  function of the heat-conduction equation on a semiinfinite straight  line 

(2.7) 

Since G ~ y  and R ~ y2 as y ---0, Eq. (2.6) leads to a th i rd-power  attenuation law: ~T ~ y3. 

3. In dimensionless form the equation for the pulsations of concentrat ion c appears  thus 

owe (3.1) oc I hc = dC Oc Ouo 0 ( v c -  <vc)) - -  
Ot S - -  v - . ~ - -  U Ox Oz ~ Oz 

where C (y) is the mean concentration.  

The boundary condition for Eq. (3.1) is the same as in the previous ease  [(C)y= 0 =0]. The problem is 
ent irely analogous to the ease set out in section 2. The approximation used there  is valid here also; in fact  
in the present  case  it has bet ter  grounds since no p ressu re  gradient appears  in (3.1). When the Schmidt 
number S >>1 it may be shown (using perturbat ion theory) that the rejected last  four t e r m s  in (3.1) make a 
contribution to the turbulent mass  flow (vc) proport ional  to higher powers of y than the retained t e rm 
vdC/dy. 

Omitting the calculations,  let us simply give the final express ion for the turbulent diffusion coeff i -  
cient 
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Dr (y) = ~ dy' ~ d'~R (y, y'; "~) G (y, y'; r, / S) 
0 O 

(3.2) 

which conicides with Eq. (2.6) except for the t ime argument  in the Green ' s  function (2.7), which in the p r e -  
p resen t  case  is divided by S. 

Analysis  of Eq. (3.2) shows that for large but finite S there  is a nar row region y < s-i /2 in which D 
DT ~ y3. If we let S tend to infinity and use the Green ' s  function p roper ty  

l imG(y, y'; ~ ) - -  ~ ( y - - y ' )  

where 6 ( y - y ' )  is the Dirae delta function, we obtain the L a n d a u - L e v i c h  equation (1.3), which is only valid 
for turbulent diffusion when S >> 1, but not for  turbulent v i scos i ty  

DT (y)= ~ <v(y, t)v(y, t - -  v)> d v = < v ~ > T ~ y 4  
0 

where the mean period of the pulsations 

4. For the cor re la t ion  function R 
tion: 

T is the Lagrange t ime scale 

cr 

T = I R (y, y; "~) d'~ / B (y, y; 0) 
0 

in the v iscous  under layer  we may propose the following approxima-  

R (y, y'; T) = Ay~y'~e -~/T 

where A and T are  constants .  Then the integrals  in Eqs. (2.6) and (3.2) may be expressed  in e lementary  
functions; af ter  dividing (2.6) by (3.2) we obtain the turbulent Schmidt number 

Sr = S i -- exp ( -  y / If T) + y~ / 2T (4.1) 
1 --exp (--y ]/S/T) +y~S/2T 

We see f rom (4.1) that S T - 1 for S =1. This may also be concluded f rom Eqs. (2.6) and (3.2). For  
S >>1 there  are  three regions of differing S T behavior:  y < q-~/S  S T ~ ~f-Sin the region v~" > y > 
ST ~ y- i ;  for y > q 'T' the turbulent Schmidt number is close to unity, and in the limit (y - - ~ )  we have S T =1. 
Figure 1 shows the behavior  of the turbulent Schmidt number (ST-I) for T =20 and S =2, 5, 10, 20, 80, 
(curves 1, 2, 3, 4, 5, 6 respectively).  

Data regarding  the turbulent Schmidt number are  ext remely  contradic tory,  but there  is not doubt as 
to the fact that on moving away f rom the wall it ceases  to depend on molecular  effects (on S) and becomes  
constant.  In this case ST -~ 1 as y - -  ~ .  This is a consequence of the approximation taken (the convective 
t e r m s  and 0p/Ox are rejected),  which is invalid outside the viscous underlayer .  

5. If motion of the liquid takes place c lose to the wall with a charac te r i s t i c  t ime T, the dimensions 
of the regions in which the influence of v i scos i ty  and diffusion is felt (from dimensional considerations) 
amount to 

y l -  V ~ ,  y~-  VD-T (5. l) 

where all the quantities are dimensional. 

For v >> D there is a region Yl >> Y >> Y2 in which we may neglect the action of molecular diffusion on 
turbulent (molar) mass transfer, but we must still not neglect the action of viscosity on the velocity pulsa- 
tions, and hence on the turbulent transfer of momentum. Neglect of molecular effects leads to Eq. (1.3). 
Equation (5.1) in dimensionless form gives those values of the coordinate y for which the behavior of S T 
changes in Eq. (4.1). 

if heat is regarded as a passive impurity, all the results are also valid for heat-transfer processes; 
it is only neces sa ry  to replace the concentra t ion by tempera tu re  and the Schmidt number by the Prandt l  
number Pr .  

We may therefore  reasonably assume that the law of turbulent fr ict ion (1.2) holds in the viscous under-  
layer ,  and the limiting value of the turbulent Schmidt (Prandtl) number is given by the equation 
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lira (ST, PrT)'~ y-1 
s. ~r~= (1.4) * 

Thus in exper iments  on m a s s  t r a n s f e r  with la rge  Schmidt numbers  only the behavior  of D T (y) may  
be determined;  this re la t ionship  should approach  the four th-power  law of at tenuation move c lose ly ,  the 
g r ea t e r  the value of S. The behavior  of v T (y) cannot be de te rmined  f r o m  these  exper iments .  

The author is gra teful  to S. S. Kutateladze, V. E. Nakoryakov,  M. A. Gol 'dsht ik,  and V. N. Shtern for  
discuss ing the r e su l t s  of this  investigation. 
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